

USER MANUAL

 Longo programmable controller LPC-2.DT3
Switch, access and temperature panel

Version 4

SMARTEH d.o.o. / Poljubinj 114 / 5220 Tolmin / Slovenia / Tel.: +386(0) 388 44 00 / e-mail: info@smarteh.si / www.smarteh.si

Written by SMARTEH d.o.o. Copyright © 2021, SMARTEH d.o.o.

User Manual

Document Version: 4 November, 2021

STANDARDS AND PROVISIONS: Standards, recommendations, regulations and provisions of the country in which the devices will operate, must be considered while planning and setting up electrical devices. Work on 100 .. 240 V AC network is allowed for authorized personnel only.

DANGER WARNINGS: Devices or modules must be protected from moisture, dirt and damage during transport, storing and operation.

WARRANTY CONDITIONS: For all modules LONGO LPC-2 - if no modifications are performed upon and are correctly connected by authorized personnel - in consideration of maximum allowed connecting power, warranty of 24 months is valid from the date of sale to the end buyer, but not more than 36 months after delivery from Smarteh. In case of claims within warranty time, which are based on material malfunctions the producer offers free replacement. The method of return of malfunctioned module, together with description, can be arranged with our authorized representative. Warranty does not include damage due to transport or because of unconsidered corresponding regulations of the country, where the module is installed.

This device must be connected properly by the provided connection scheme in this manual. Misconnections may result in device damage, fire or personal injury.

Hazardous voltage in the device can cause electric shock and may result in personal injury or death.

NEVER SERVICE THIS PRODUCT YOURSELF!

This device must not be installed in the systems critical for life (e.g. medical devices, aircrafts, etc.).

If the device is used in a manner not specified by the manufacturer, the degree of protection provided by the equipment may be impaired.

Waste electrical and electronic equipment (WEEE) must be collected separately!

LONGO LPC-2 complies to the following standards: •EMC: EN 61000-6-3:2007 + A1:2011, EN 61000-6-1:2007, EN 61000-3-2:2006 + A1:2009 + A2: 2009, EN 61000-3-3:2013 •LVD: IEC 61010-1:2010 (3rd Ed.), IEC 61010-2-201:2013 (1st Ed.)

Smarteh d.o.o. operates a policy of continuous development. Therefore we reserve the right to make changes and improvements to any of the products described in this manual without any prior notice.

MANUFACTURER: SMARTEH d.o.o. Poljubinj 114 5220 Tolmin Slovenia

Index

Longo programmable controller LPC-2.DT3

1 ABBREVIATIONS1
2 DESCRIPTION
3 FEATURES
4 OPERATION4
4.1 Operational modes4
4.2 Parameters4
5 INSTALLATION11
5.1 Connection scheme11
5.2 Default image drawing15
5.3 Mounting instructions16
5.4 Module labeling19
6 TECHNICAL SPECIFICATIONS20
7 PROGRAMMING GUIDE21
7.1 Background picture replacement and changing of status symbols21
7.2 Changing of status symbols21
7.3 Bar graphs positioning22
7.4 Temperature and status text positioning23
8 SPARE PARTS25
9 CHANGES
10 NOTES

1 ABBREVIATIONS

IR	Infrared
LED	Light emitting diode
LCD	Liquid crystal display
ТВ	Touch button
PWR	Power
ERR	Error
DIP	Dual in-line package
SEL	Selector

2 DESCRIPTION

LPC-2.DT3 panel combines three types of common building automation modules in one module, RFID reader, thermostat and switch with statuses panel. All of this is incorporated into an enclosure with a frameless glass screen with LCD which offers an intuitive, clear and flexible interface between the user and the building. This means that this package as a whole brings a greater user-experience and ease of use for the integrators who benefits from less cabling and price reduction by having less modules to deal with.

Panel is equipped with LCD, RFID, eight touch buttons (TB), LED on each touch button, eight status symbols on LCD, buzzer, temperature sensor and light intensity sensor.

Color picture, size of status symbol on LCD and bar graphs is possible to be changed by using free Smarteh's LCD Composer software. This way - the best user experience for every situation can be achieved.

LPC-2.DT3 is controlled and powered from the main module (e.g., LPC-2.MC8, LPC-2.MC9) via Smarteh bus.

3 FEATURES

Figure 1: LPC-2.DT3, card holder or card access

Table 1: Features

Frameless glass screen with LCD

8 capacitive touch buttons

8 blue LED, one on each touch button

8 rectangular symbols to show on/off status on the LCD

Integrated ISO/IEC 14443 A/MIFARE RFID UID reader

Possibility to use as card access or card holder - supplied with two different plastic covers for RFID slot

Integrated temperature and light sensor

LCD intensity control

Color LCD with possibility of background picture changing and status symbols size changing¹

Buzzer for touch beep signalization or other signalization which is controlled from PLC program

2 diagnose LED

Flush mount in various flush mounting boxes or screw mount

Quality design

For LCD background picture replacement, please refer to LCD Composer \rightarrow Help.

4 OPERATION

LPC-2.DT3 can be in one of two operational modes - normal or error. When LPC-2.DT3 is in normal mode, module parameters can be read or written via Smarteh IDE software.

4.1 Operational modes

Normal

Communication with the main module is working. Only green "PWR" LED10 is turned on.

Error

In case of communication fault, red "ERR" LED9 will turn on.

4.2 Parameters

If parameter is set to logical "1", is considered to be active, enabled or set. If parameter has logical value "0" is considered to be inactive, disabled or cleared.

Parameter can be a command or feedback. When parameter is marked as feedback it means that LPC-2.DT3 is sending information to the main module. On the other hand, command represents request from the main module to the LPC-2.DT3.

Command:

New ID confirmation [olDNew Type: BOOL	Confirm]: When this bit goes to "1", <i>iIDNew</i> gets reset.
Raw to engineering data:	"0" \rightarrow New ID not confirmed "1" \rightarrow New ID confirmed - reset <i>iIDNew</i>
LED for occupancy switch an goes to "1", card holder LED go Type: BOOL	d card holder illumination [oHolderLEDoff]: When this bit es off.
Raw to engineering data:	"0" → LED ON "1" → LED OFF
Touch button LED 1 [oTBLED Type: BOOL	1]: When this bit goes to "1", LED 1 turns ON.
Raw to engineering data:	"0" \rightarrow Touch button LED OFF "1" \rightarrow Touch button LED ON
Touch button LED 2 [oTBLED2 Type: BOOL	2]: When this bit goes to "1", LED 2 turns ON.
Raw to engineering data:	"0" \rightarrow Touch button LED OFF "1" \rightarrow Touch button LED ON
Touch button LED 3 [oTBLED. Type: BOOL	3]: When this bit goes to "1", LED 3 turns ON.
Raw to engineering data:	"0" → Touch button LED OFF "1" → Touch button LED ON
Touch button LED 4 [oTBLED4 Type: BOOL	4]: When this bit goes to "1", LED 4 turns ON.
Raw to engineering data:	"0" → Touch button LED OFF "1" → Touch button LED ON

Touch button LED 5 [oTBLED5]: When this bit goes to "1", LED 5 turns ON. Type: BOOL Raw to engineering data: "0" \rightarrow Touch button LED OFF "1" \rightarrow Touch button LED ON Touch button LED 6 [oTBLED6]: When this bit goes to "1", LED 6 turns ON. Type: BOOL "0" \rightarrow Touch button LED OFF Raw to engineering data: "1" → Touch button LED ON Touch button LED 7 [oTBLED7]: When this bit goes to "1", LED 7 turns ON. Type: BOOL "0" \rightarrow Touch button LED OFF Raw to engineering data: "1" → Touch button LED ON Touch button LED 8 [oTBLED8]: When this bit goes to "1", LED 8 turns ON. Type: BOOL "0" \rightarrow Touch button LED OFF Raw to engineering data: "1" → Touch button LED ON Enable beep when new ID is detected [oIDNewBeepEn]: This command enables short beep of the buzzer when new ID of RFID card is detected. Type: BOOL "0" \rightarrow New ID beep OFF Raw to engineering data: "1" \rightarrow New ID beep ON Enable touch button beep [oBeepEn]: This command enables short beep of the buzzer when any of the touch button is pressed and its corresponding LED is ON. Beep happens on rising-edge of the touch. Type: BOOL "0" \rightarrow Touch button beep OFF Raw to engineering data: "1" \rightarrow Touch button beep ON Buzzer [oBuzz]: When this bit goes to "1", buzzer turns ON until this bit is changed back to "0". Type: BOOL Raw to engineering data: "0" \rightarrow Buzzer OFF "1" \rightarrow Buzzer ON Temp. display num enable [oTmpEn]: When this bit goes to "1", temperature is shown on the LCD. Type: BOOL Raw to engineering data: "0" \rightarrow Temperature not shown on the display "1" \rightarrow Temperature shown on the display Temp. unit selector [oC_F_Sel]: Selector for temperature units Type: BOOL Raw to engineering data: "0" → Degrees Celsius "1" \rightarrow Degrees Fahrenheit Min temp. set par. [0.01°] [oTMin]: Minimum allowed temperature setpoint. Parameter depends on the oC_F_Sel parameter. Type: WORD If oC_F_Sel

Raw to engineering data:	$0 \dots 4000 \rightarrow 0 \dots 40.00^{\circ} C$
is "1":	
Raw to engineering data:	3200 9900 → 32.00 99.00° F

Max temp. set par. [0.01°] *[oTMax]*: Maximum allowed temperature setpoint. Parameter depends on the *oC_F_Sel* parameter. Type: WORD

If oC_F_Sel

$0 4000 \rightarrow 0 40.00^{\circ} C$
3200 9900 → 32.00 99.00° F

Fan bar color selector [oFanBarColor]: Selector for color of fan bar. Type: WORD

Raw to engineering data:	$0 \rightarrow White$
	$1 \rightarrow Blue$
	$2 \rightarrow \text{Red}$
	$3 \rightarrow \text{Green}$

Temperature bar color selector [oTmpBarColor]: Selector for color of temperature bar.

$0 \rightarrow White$
1 → Blue
$2 \rightarrow \text{Red}$
$3 \rightarrow \text{Green}$

Fan mode set [TB,OFF,I,II,III,Auto] [oFanSet]: Mode of fan.

Type: WORD	
Raw to engineering data:	$0 \rightarrow$ Fan set from touch buttons
	$1 \rightarrow \text{OFF}$
	2 → I
	3 → II
	4 → III
	$5 \rightarrow Auto$

Remote temp. setpoint [0.01°] *[oRTSet]*: Remote temperature setpoint. Parameter depends on the oC_F_Sel parameter.

Type: WORD

If oC_F_Sel	
is "0":	
Raw to engineering data:	$0 4000 \rightarrow 0 40.00^{\circ} C$
Raw to engineering data:	3200 9900 → 32.00 99.00°F

Remote temperature [0.01°] [oTRem]: Remote temperature. Parameter depends on the oC_F_Sel parameter.

Type: WORD

If oC_F_Sel	
is "0":	
Raw to engineering data:	$0 4000 \rightarrow 0 40.00^{\circ} C$

is "1": Raw to engineering data: $3200 .. 9900 \rightarrow 32.00 .. 99.00^{\circ}F$

Status on-screen text [oStatus]: Selector for displaying text on the LCD screen.

Type: WORD

Raw to engineering data:	$0 \rightarrow No text$
	$1 \rightarrow \text{OFF}$
	$2 \rightarrow ECO$
	$3 \rightarrow \text{ERR}$
	$4 \rightarrow SET$

LCD and LED intensity selector [oLCDandLEDintensity]: This parameter defines how will the intensity of LCD and LED be regulated.

Type: WORD

Raw to engineering data:	xxxxxxxxxxxxx0 (bin) \rightarrow Default intensity regulation
	Low Byte = $1 \rightarrow$ Change intensity to value that is in High Byte
	of oLCDandLEDintensity, no fade-effect
	Low Byte = $2 \rightarrow$ Change intensity to value that is in High Byte
	of oLCDandLEDintensity, fade-effect
	High Byte = 0 100 \rightarrow 0 100% manual SP for intensity

Status symbol selector [oStatusSymbolSel]²**:** Selector for Status 1 .. Status 8 on LCD Type: WORD

Raw to engineering data:	xxxxxxxxxxxxx00 (bin) \rightarrow Status 1 not shown
	xxxxxxxxxxxx01 (bin) \rightarrow Status 1 color Foreground (ON)
	xxxxxxxxxxxx10 (bin) \rightarrow Status 1 color Background (OFF)
	xxxxxxxxxx00xx (bin) \rightarrow Status 2 not shown
	xxxxxxxxxx01xx (bin) \rightarrow Status 2 color Foreground (ON)
	xxxxxxxxxx10xx (bin) \rightarrow Status 2 color Background (OFF)
	xxxxxxxxx00xxxx (bin) \rightarrow Status 3 not shown
	xxxxxxxxx01xxxx (bin) \rightarrow Status 3 color Foreground (ON)
	xxxxxxxxx10xxxx (bin) \rightarrow Status 3 color Background (OFF)
	xxxxxxx00xxxxxx (bin) \rightarrow Status 4 not shown
	xxxxxxx01xxxxxx (bin) \rightarrow Status 4 color Foreground (ON)
	xxxxxxxx10xxxxxx (bin) \rightarrow Status 4 color Background (OFF)
	xxxxxx00xxxxxxxx (bin) \rightarrow Status 5 not shown
	xxxxxx01xxxxxxx (bin) \rightarrow Status 5 color Foreground (ON)
	xxxxxx10xxxxxxx (bin) \rightarrow Status 5 color Background (OFF)
	xxxx00xxxxxxxxxx (bin) \rightarrow Status 6 not shown
	xxxx01xxxxxxxxx (bin) \rightarrow Status 6 color Foreground (ON)
	xxxx10xxxxxxxxx (bin) \rightarrow Status 6 color Background (OFF)
	xx00xxxxxxxxxxx (bin) \rightarrow Status 7 not shown
	xx01xxxxxxxxxx (bin) \rightarrow Status 7 color Foreground (ON)
	xx10xxxxxxxxxx (bin) \rightarrow Status 7 color Background (OFF)
	$00xxxxxxxxxxxxx (bin) \rightarrow Status 8 not shown$
	$01xxxxxxxxxxxxx$ (bin) \rightarrow Status 8 color Foreground (ON)
	$10xxxxxxxxxxxx (bin) \rightarrow Status 8 color Background (OFF)$

Feedback:

New ID detected *[iIDNew]*: This bit goes to "1" when new ID is detected. Type: BOOL

2 Programmer may use POU DT3_StatusSymbol in SmartehIDE, which already handles correct shifting of the bits.

Raw to engineering data:

"0" \rightarrow No new ID "1" \rightarrow New ID

Occupancy switch *[iOccup]*: This bit is "1" for as long as any type of card is present in card holder. It's functionality is based on interruption of blue light curtain so it is essential that holder LED is ON.

Type: BOOL	
Raw to engineering data:	"0" \rightarrow Card is not present in card holder
	"1" \rightarrow Card is present in card holder

MIFARE card presence [iCardPresent]: This bit is "1" for as long as ISO/IEC 14443 A/MIFARE card is present at RFID reader.

Type: BOOL Raw to engineering data: $"0" \rightarrow MIFARE$ card is not present "1" $\rightarrow MIFARE$ card is present

Toggle communication bit *[iComm]*: At each valid Rx packet from main module, this bit is toggled.

Type: BOOL

Touch button 1 *[iTB1]*: Touch button 1 state Type: BOOL Raw to engineering data: $0^{"} \rightarrow$ Touch button OFF "1" \rightarrow Touch button ON

Touch button 2 [iTB2]: Touch button 2 state

Type: BOOL	
Raw to engineering data:	"0" \rightarrow Touch button OFF
	"1" \rightarrow Touch button ON

Touch button 3 [iTB3]: Touch button 3 state

Type: BOOL	
Raw to engineering data:	"0" \rightarrow Touch button OFF
	"1" \rightarrow Touch button ON

Touch button 4 [iTB4]: Touch button 4 state

Type: BOOL	
Raw to engineering data:	"0" \rightarrow Touch button OFF
	"1" \rightarrow Touch button ON

Touch button 5 *[iTB5]*: Touch button 5 state Type: BOOL

Raw to engineering data:	"0" \rightarrow Touch button OFF
	"1" \rightarrow Touch button ON

Touch button 6 *[iTB6]*: Touch button 6 state Type: BOOL Raw to engineering data: $"0" \rightarrow Touch button OFE$

Raw to engineering data.	$0 \rightarrow 100CH DULLOH OFF$
	"1" \rightarrow Touch button ON

Touch button 7 [iTB7]: Touch button 7 state Type: BOOL Raw to engineering data: $0^{"} \rightarrow$ Touch button OFF "1" \rightarrow Touch button ON

Touch button 8 [iTB8]: Touch button 8 state Type: BOOL

Raw to engineering data:	"0" \rightarrow Touch button OFF
	"1" \rightarrow Touch button ON

Act. Light intensity [iLight]: Actual measured light intensity.

Type: WORD Raw to engineering data: $0 .. 100 \rightarrow 0 .. 100 \%$

Act. Room temp. [*iTAct*]: Actual room temperature measured by wireless panel. Parameter depends on the oC_F_Sel parameter.

Type: WORD

If oC_F_Sel

is "0":	
Raw to engineering data:	$0 4000 \rightarrow 0 40.00^{\circ} C$
is "1":	
Raw to engineering data:	3200 9900 → 32.00 99.00° F

Temp. setpoint [iTSet]: Temperature setpoint.

Type: WORD

If oC_F_Sel

is "0":	
Raw to engineering data:	$0 4000 \rightarrow 0 40.00^{\circ}C$
is "1":	
Raw to engineering data:	3200 9900 → 32.00 99.00°F

Act. fan mode [OFF,I,II,III,Auto] [iFanMode]: Actual fan mode selection.

Type: WORD Raw to engineering data: $1 \rightarrow OFF$ $2 \rightarrow I$ $3 \rightarrow II$ $4 \rightarrow III$ $5 \rightarrow Auto$

Length of ID code *[iIDLength]*: This parameter has the information of the length of the cards UID code which has been read lastly. Data resets when RFID Mifare card is not present at RFID reader any more.

Type: WORD Raw to engineering data: $1 \dots 10 \rightarrow 1 \dots 10$ bytes

RFID ID received Word1 *[iIDW1]*: Byte 0 and byte 1 of UID. UID resets when RFID card is not present at RFID reader any more. Type: WORD

Raw to engineering data: $0 \dots 65535 \rightarrow 0 \dots 65535$

RFID ID received Word2 *[iIDW2]*: Byte 2 and byte 3 of UID. UID resets when RFID card is not present at RFID reader any more.

Type: WORD

Raw to engineering data: $0 \dots 65535 \rightarrow 0 \dots 65535$

RFID ID received Word3 *[iIDW3]*: Byte 4 and byte 5 of UID. Byte 8 and byte 9 of UID. UID resets when RFID card is not present at RFID reader any more. Type: WORD Raw to engineering data: $0...65535 \rightarrow 0...65535$

RFID ID received Word4 *[iIDW4]*: Byte 6 and byte 7 of UID. Byte 8 and byte 9 of UID. UID resets when RFID card is not present at RFID reader any more. Type: WORD

Raw to engineering data: $0 \dots 65535 \rightarrow 0 \dots 65535$

RFID ID received Word5 *[iIDW5]*: Byte 8 and byte 9 of UID. UID resets when RFID card is not present at RFID reader any more. Type: WORD Raw to engineering data: $0 ... 65535 \rightarrow 0 ... 65535$

5 INSTALLATION

5.1 Connection scheme

Table 2: K1			
K1.1	GND	Ground	
K1.2	7 30 V DC	Power supply input	
K1.3	Standard RS-485 A	Data receive/send line A	
K1.4	Standard RS-485 B	Data receive/send line B	

S1

Table 3: K2		
К2	Programming connector	Factory use only
Table 4: LEDs		
LED1: blue	Touch button LED 1	Programmable
LED2: blue	Touch button LED 2	Programmable
LED3: blue	Touch button LED 3	Programmable
LED4: blue	Touch button LED 4	Programmable
LED5: blue	Touch button LED 5	Programmable
LED6: blue	Touch button LED 6	Programmable
LED7: blue	Touch button LED 7	Programmable
LED8: blue	Touch button LED 8	Programmable
LED9: red	Communication	ON: RS-485 communication fault OFF: RS-485 communication OK
LED10: green	Power supply	ON: power supply OK OFF: power supply missing or power off
Table 5: LCD bars	a & Buttons	
Temperature bar graph	Temp. SP	Active LCD bar presents actual set point relative to range <i>oTMin</i> (bottom LCD bar) - <i>oTMax</i> (top LCD bar)
Fan bar graph	Fan mode	I: minimum speed selected II: middle speed selected III: maximum speed selected AUTO: auto speed selection OFF: module functions switched-off
TB1	Touch button 1	Readable
TB2	Touch button 2	Readable
TB3	Touch button 3	Readable
TB4	Touch button 4, Temp. SP up	Readable and increase by one step, step = (Max. temp - Min. temp) * 1/10
TB5	Touch button 5, Temp. SP down	Readable and decrease by one step, step = (Max. temp - Min. temp) * 1/10
ТВ6	Touch button 6, Fan mode up	Readable and Increase Mode & speed selection
TB7	Touch button 7	Readable
ТВ8	Touch button 8, Fan mode down	Readable and Decrease Mode & speed selection

Table 6: S1				
RS-485 ADDRESS	Switch 1	Switch 2	Switch 3	Switch 4
0		OFF	OFF	OFF
1		OFF	OFF	ON
2		OFF	ON	OFF
3		OFF	ON	ON
4		ON	OFF	OFF
5		ON	OFF	ON
6		ON	ON	OFF
7		ON	ON	ON

5.2 Default image drawing

5.3 Mounting instructions

Figure 4: Housing dimensions

All connections, module attachments and assembling must be done while module is not connected to the power supply.

Module should be positioned in the wall inside of the room. Avoid direct sunlight, positioning near heating/cooling source object or under high luminance lights for best performance of the on-board sensors. Junction box and tubes in the wall must be sealed to prevent airflow. Displayed temperature is adequate to temperature approx. 10 cm below module and 1 cm off the wall. Recommended installation height is 1.5 m above floor level.

Mounting instructions:

- 1. Fasten mounting frame³ with screws⁵ into TEM VM4 HM40, TEM PM4 DM40, Elettrocanali EC37104, Legrand 801 42 or similar flush mounting box⁴ see Figure 5. The holder must be turned so that the opening is up, otherwise RFID will not work.⁵
- 2. Mount the desired plastic cover for RFID slot card holder or card access see Figure 5
- 3. Set the correct RS-485 address for LPC-2.DT3 (refer to the table 5).
- 4. Connect interconnection cable to the connector K1. Max. allowed tensile force is 30 N.
- 5. Mount LPC-2.DT3 into flush mounting box, using provided springs see Figure 5.

LPC-2.DT3 module must be installed properly, isolating any potential connection with electrical sources other than power supply from main module. Improperly installed module may cause failure of the module itself, other devices on the same wiring, main module or may lead to fire or personal injury.

LPC-2.DT3 is connected to the main module with interconnection cable (e.g. SSK, ICM-7). When more modules are connected to the main module, splitter (e.g. SPL-2) is also required (figure 2).

NOTE: Signal wires must be installed separately from power and high voltage wires in accordance with general industry electrical installation standard.

4 Flush mounting box must be ordered separately - contact Smarteh.

³ Holders, screws and springs are provided in package with LPC-2.DT3

⁵ In case that the bracket touches the walls of the mounting box, it can be folded inwards.

5.4 Module labeling

Figure 7: Labels

LPC-2.DT3 P/N:225DT318001001 D/C: 01/18 Label 2 (sample):

S/N: DT3-S9-180000003

Label 1 descriptions:

- 1. LPC-2.DT3 is the full product name.
- 2. P/N:225DT318001001 is the part number.
 - 225 general code for product family,
 - DT3 short product name,
 - 18001 sequence code,
 - 18 year of code opening,
 - 001 derivation code,
 - 001 version code (reserved for future HW and/or SW firmware upgrades).
- 3. D/C: 01/18 is the date code.
 - 01 week and
 - **18** year of production.

Label 2 descriptions:

- 1. S/N: DT2-S9-1800000003 is the serial number.
 - DT3 short product name,
 - **S9** user code (test procedure, e.g. Smarteh person xxx),
 - 180000003 year and current stack code,
 - 18 year (last two cyphers),
 - 00000003 current stack number; previous module would have the stack number 00000002 and the next one 00000004.

6 TECHNICAL SPECIFICATIONS

Table 7: Technical specifications				
Power supply	from main module			
Interconnection connector type	RJ-12 6/6			
Power consumption	2 W			
Display	2", 220 × 176 resolution			
RFID type - unique ID read	ISO/IEC 14443 A/MIFARE			
Max. reading distance	6 cm			
Dimensions (L x W x H)	118 x 160 x 27 mm			
Weight	200 g			
Maximum altitude	2000 m			
Mounting position	vertical			
Ambient temperature	0 to 50 °C			
Ambient humidity	max. 95 %, no condensation			
Transport and storage temperature	-20 to 60 °C			
Protection class	IP 20			

7 PROGRAMMING GUIDE

7.1 Background picture replacement and changing of status symbols

For LCD background picture replacement, please refer to LCD Composer \rightarrow Help.

7.2 Changing of status symbols

For changing the size of rectangular status symbols, adjust Xs and Ys on Bar graphs/symbols data 4 in LCD composer as it is shown in Figure 8. Figures 9 and 10 shows two examples of how number of Xs and Ys influences the size of displayed status symbol. Color of the status symbol can be toogled between Back color and Fore color using *oStatusSymbolSel* parameter. For more information about color definition and other, please refer to LCD Composer \rightarrow Help.

Default values can be seen in Figure 8.

Figure 8: Field for status symbols in LCD Composer

Figure 9: Example for Xs = 4, Ys = 19

Figure 10: Example for Xs = 8, Ys = 6

7.3 Bar graphs positioning

There are two 2 bar graphs available. Temperature bar graph has 11 vertical cursor positions and fan bar graph has 5 vertical cursor positions. For origin positioning of bar graphs, adjust Xs and Ys on Bar graphs/symbols data 1 for temperature bar graph and Bar graphs/symbols data 2 for fan bar graph as it is shown in Figure 11. Graphical representation of positioning can be seen in Figure 12. Color of bar graphs background is defined in Back color. Fore color is not applicable through LCD Composer. Cursor color can be changed through module parameters. Cursor size is 9 x 12 px.

If Xs and Ys are greater than 221 than graph will be moved out of the display area and it won't be shown.

Default values can be seen in Figure 11.

Figure 11: Field for bar graphs in LCD Composer

7.4 Temperature and status text positioning

Temperature text is related to parameter *iTAct/iTSet* and status text is related to parameter *oStatus*.

Temperature text origin is adjusted using Numbers data 1 and origin of status text is adjusted using Numbers data 3. Graphical representation of positioning can be seen in Figure 14. Back color field is used for defining background color of square where text is positioned and Fore color is used for text color.

Default values can be seen in Figure 13.

8 SPARE PARTS

For ordering spare parts following Part Numbers should be used:				
LPC-2.DT3 switch, access and temperature panel				
LPC-2.DT3 - white	P/N: 225DT318001001			
LPC-2.DT3 - black	P/N: 225DT320002001			
Interconnection cable				
ICM-x	P/N: 203ICMxxxxxxx			
Splitter				
SPL-2 (1/8)	P/N: 206SPL04002001			

9 CHANGES

Date	۷.	Description
25.11.21	4	Figure 6 updated.
21.04.20	3	Black version added.
27.03.20	2	Mounting instructions update.
01.08.18	1	The initial version, issued as LPC-2.DT3 User Manual.

The following table describes all the changes to the document.

10 NOTES